
IDC RE-ENGINEERING REPORT
SAND20XX-XXXX
Unlimited Release
December 2015

IDC Re-Engineering Phase 2
Architecture Document
Version 0.1

John Burns

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2016-0092R

December 2015

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

December 2015

3

SAND201x-xxxx
Unlimited Release
December, 2015

IDC Architecture Document
Initial Draft

J. Burns
Next Generation Monitoring Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0401

Abstract

This document contains a description of the system architecture for the IDC Re-
Engineering Phase 2 project. This is a draft version that primarily provides
background information for understanding delivered Use Case Realizations.

December 2015

4

This page intentionally left blank

December 2015

5

TABLE OF CONTENTS

1 Introduction ..7

2 Documents..8
2.1 Documents...8

3 Scope ..9
3.1 System Overview...9
3.2 Mission..9
3.3 Deployment Concept ...9
3.4 Re-engineering Principles ..9

3.4.1 Re-Architect System Using Model-Based Engineering.................................10
3.4.2 Enhanced Mission Capabilities...10
3.4.3 Extensibility ...10
3.4.4 Platform Independence...10
3.4.5 Integrated Testing...10
3.4.6 Incremental Transition ...11
3.4.7 Modernize Development Process and Environment11

3.5 Assumptions ..11

4 Architectural Representation...12
4.1 Use Case View ..13
4.2 Logical View ...15

4.2.1 Control-Based Architecture ..15
4.2.2 Domains...17
4.2.3 Analysis Classes...19
4.2.4 Types of Analysis Classes ..19
4.2.5 Use Case Realizations ..21
4.2.6 Mechanisms ...21
4.2.7 Patterns ..26
4.2.8 Key Features ..37

4.3 Implementation View ..40
4.4 Process View ...40
4.5 Deployment View..40

5 Works Cited..41

6 Appendix A. Specifications ...42

December 2015

6

TABLE OF FIGURES

Figure 4-4. OSD Components ...24
Figure 4-5. Relationship between Control Class and Plugin Class ...28
Figure 4-6. Plugin Initialization...29
Figure 4-7. Plugin Invocation in Automatic Processing ...30
Figure 4-8. Plugin Invocation in Interactive Processing ...31
Figure 4-9. Event Analysis Classes..36
Figure 4-10. Event Hierarchy ..37

December 2015

7

1 INTRODUCTION
The	International	Data	Centre	(IDC)	of	the	Comprehensive	Nuclear-Test-Ban	Treaty	
Organization	(CTBTO)	applies,	on	a	routine	basis,	automatic	processing	methods	and	
interactive	analysis	to	raw	International	Monitoring	System	(IMS)	data	in	order	to	
produce,	archive,	and	distribute	standard	IDC	products	on	behalf	of	all	States	Parties.	
The	routine	processing	includes	analysis of	events	with	the	objective	of	screening	out	
events	considered	to	be	consistent	with	natural	phenomena	or	non-nuclear,	man-made	
phenomena.	This	document	includes	the	dissemination	of	radionuclide	data	and	
products but	not	the	acquisition	or	processing	of	radionuclide	data.	

The purpose of this Architecture Document is to describe the overall structure of the software
and hardware included in the IDC Re-engineering project. The Architecture Document is the
primary artifact created and maintained by the architecture team; it serves as the
communication medium between the architecture team and other developers.

December 2015

8

2 DOCUMENTS

2.1 Documents

Author/Document Rev. Title Date
IDC-RP2-SSD-V1.3 IDC System	Specification	Document Dec 2015
IDC-RP2-UCMS-V1.1 IDC	Use	Case	Model	Survey Dec 2015
IDC-RP2-GLOSSARY-V1.1 IDC	Glossary Dec 2015

—END OF TABLE—

December 2015

9

3 SCOPE
The Architecture Document captures the general principles used throughout the design of the
system and serves as a guide for the further development of the system. It is not meant to be a
complete design document. To keep it short and accessible, and to avoid too much
redundancy with other documents, this Architecture Document is intentionally limited to a
high level of abstraction.

The Architecture Document evolves during the design of the system and continuously
captures new major design decisions made regarding the system. In the context of an iterative
development process, there is one version of the Architecture Document per development
iteration.

The terminology and graphical notation used in this document are derived from the Unified
Modeling Language (UML).

3.1 System Overview
The Comprehensive Test Ban Treaty Organization (CTBTO) operates the International Data
Centre (IDC) to support the Comprehensive Test Ban Treaty (CTBT) monitoring mission.
The IDC collects data produced by the network of sensors called the International
Monitoring System (IMS). The IDC integrates, processes, and analyzes data in order to
detect, locate, identify, and report natural and man-made events. It also collects and forwards,
as required, data to National Data Centers (NDC).

3.2 Mission
The IDC’s mission is to collect, analyze and distribute information to support monitoring
compliance with nuclear test treaties by NDC’s. This mission requires IDC to detect, locate,
identify, evaluate, store, and report natural and man-made events. The IDC uses several
different monitoring techniques to perform this mission, each designed to monitor a specific
physical domain (e.g., space, atmosphere, underground, underwater) for events.

3.3 Deployment Concept
When the CTBT enters into force the System will support operations 24 hours per day, 7
days per week (24x7). The IDC is deployed at a single fixed site but the system supports
multiple remote users as well as stand-alone, portable systems.

3.4 Re-engineering Principles
Re-engineering of the IDC is necessary to maintain current mission capability, reduce the
cost of software maintenance, and provide the ability to enhance the system into the future.
The following principles support achieving the goals of the modernization program.

 Re-architect System using Model-Based Engineering

 Enhanced Mission Capabilities

 Extensibility

 Platform Independence

 Integrated Testing

December 2015

10

 Incremental Transition

 Modernize Development Process and Environment

3.4.1 Re-Architect System Using Model-Based Engineering
Model-based engineering is a methodology that focuses on creating and maintaining a set of
models that describe different aspects of the design of the system. During the design and
development process the models provide an abstraction to facilitate discussion of significant
system features. Models provide a means of capturing design decisions and rationale.
Additionally models provide a basis for on-going support and enhancement of the system.
Model-based engineering is a key to most modern software lifecycle processes.

3.4.2 Enhanced Mission Capabilities
One of the primary objectives of this effort is to enhance existing data acquisition, event
detection, and data distribution, and data retention capabilities to meet current and future
treaty monitoring needs as specified in the IDC System Requirements Document (SRD).
The design of the re-engineered system integrates improved seismic, hydroacoustic and
infrasonic propagation models (velocity, attenuation, etc.) to improve association, location,
magnitude estimation and event screening. Another area of focus is exploiting historic data
captured by the system to improve automated system performance. The re-engineered
system captures detailed histories of analyst interactions with the system to support refining
the system and improving diagnostic capabilities.

3.4.3 Extensibility
The System is designed to support continued expansion and refinement of the mission
requirements. The system software is based on open standards and leverage software trends
supporting extensibility. The system design facilitates integration of new tools and models to
permit continued evolution and improvement of the system. Algorithms and models are key
areas of improvement for the system so the design will describe interfaces and loose
coupling of components to permit addition or substitution of these components. The system
will also allow system maintainers to modify processing sequences and parameters to permit
tuning system performance without extensive redesign and recoding. Another area of focus
for the design is operator customization. The system will use COTS and user interface
frameworks to permit users to tailor their displays to their work preferences so users can be
efficient.

3.4.4 Platform Independence
To facilitate continued system improvement and to avoid vendor-lock the System will
emphasize open source operating systems and standard frameworks.

3.4.5 Integrated Testing
A fundamental aspect of verifying the System will be the ability to reproduce a set of inputs
to the system and capture results of processing that data. The system will capture raw input
data and provide the capability to replay the data through the system. The system will
capture provenance information about system performance, processing parameters and
intermediate results to facilitate analysis and debugging.

December 2015

11

3.4.6 Incremental Transition
The IDC shall work closely with development organizations in an integrated product team to
re-engineer the System in a series of builds.

3.4.7 Modernize Development Process and Environment
A major objective of this effort is to make use of modern software design and development
practices to re-architect the System software baseline that has evolved over several years.
This effort shall include recoding the software baseline to take advantage of modern object-
oriented software languages and 64-bit multi-core CPU architectures. The architecture
design will utilize software modeling tools and processes to communicate, review, and
maintain the architectural design of the system. Common tool sets at geographically
distributed development site will facilitate a shared understanding and implementation of the
architecture.

3.5 Assumptions
The following assumptions were used in developing the architecture:

 The sensor network will be similar in type, size, and complexity as
currently defined.

 The re-engineered IDC System will be operated as described in the IDC
Operations Manual.

 The CTBTO will continue to operate a primary processing system at
the Vienna International Centre .

 The Rational Unified Process will be used for the complete lifecycle of
the project.

 The project will be a collaborative effort between the CTBTO and
external development organizations. The CTBTO has allocated staff
resources to support this effort.

 The CTBTO mission must execute fully and efficiently during
transition to the new system.

 The new system must meet needs for the next ~20 years.

December 2015

12

4 ARCHITECTURAL REPRESENTATION
Architecture is a concept that is easy to understand, but is hard to define precisely. In
particular, it is difficult to draw a sharp line between design and architecture—architecture is
one aspect of design that concentrates on some specific features.

The System is inherently complex. To reduce the complexity, we decompose the system into
smaller components or objects through the use of Object-Oriented Design methodology.
Objects abstract from the complexity by hiding the unimportant details and focusing on the
important characteristics and operations.

The decomposition, abstraction and hierarchy can be developed along several orthogonal
views, depending on the usage of the system.

 From the ground system application point of view, entities of the real
world are mapped onto corresponding design entities; for example
abstractions such as Sensors, Stations, etc.

 From the end-user’s (operator’s) point of view, certain inputs trigger
actions to take place concurrently or sequentially throughout the
system.

 From the system designer or programmer point of view, the system is
organized in a way that helps its construction, that facilitates its
development by several teams concurrently, that helps the long-term
management of the software and hardware, and that facilitates the reuse
of components throughout the system.

 From the operational and testing points of view, the system can be fully
exercised according to the use cases and scenarios. A use case is a
sequence of actions performed by the system that yields an observable
result.

The system architecture attempts to capture and describe all these aspects rigorously and
systematically. It offers multiple views or models of the software, each developed according
to its own well-defined set of rules, each revealing one aspect of the system, but all consistent
with one another.

In the Rational Unified Process (RUP) used to develop the System, analysis starts from a
typical set of views, called the 4+1 View Model [1]. It is composed of:

 Use Case View – Contains the use cases that encompass architecturally
significant behavior, classes or technical risks. A use case defines the
functions of the system by describing actor interaction with the system.

 Logical View – Realizes each use case through the use of high-level
Analysis Classes depicted on Unified Modeling Language (UML) class
and sequence diagrams. Analysis Classes describe a set of objects that
share the same responsibilities, relationships, operations, attributes, and
semantics.

 Implementation View – Organizes Analysis Classes into modules.
The Implementation View addresses the organization of delivered
source code modules in order to facilitate software development,

December 2015

13

manage subsystem reuse and reduce subsystem dependencies. Modules
are then mapped into layers; yet another level of organization intended
to reduce the overall complexity of the software.

 Process View – Contains the description of the processes in the system,
their interactions and configurations, and the allocation of Analysis
Classes to processes. This view is needed because the system has a
significant degree of concurrency.

 Deployment View – Contains the description of the various physical
processing platform configurations, and the allocation of processes
(from the Process View) to the physical platforms. This view is needed
because the system is distributed.

In addition to the above views, the term architecture also includes the overarching patterns
and/or frameworks that serve to shape the software.

4.1 Use Case View
Use cases provide a basis for describing the system from a user-level or external perspective.
Because use cases describe the functionality of the system from the user’s point of view
additional context or requirements are discovered from developing and reviewing the use
cases. In turn, use cases provide a basis for organizing and analyzing the Logical View and
Process View.

In a complex system such as this there are many use cases, some more complicated than
others. An important job of the Architecture team is to determine up front which use cases
are likely to have significant impacts on the final architecture of the system. Such use cases
are referred to as architecturally-significant and should be architected into the system first to
stabilize the architecture for later work. The determination as to whether a given use case is
architecturally-significant or not is largely a subjective matter, but in general is based on
answers to the following questions:

 Will the use case have a strong influence on how the overall system is
architected (e.g., will it require a certain framework to be put in place,
or certain widespread assumptions to be made)?

 Will implementation of the use case involve many architectural
elements (many interfaces, processes, displays, etc.)?

 Does the use case represent an important (perhaps mission-critical)
interaction with the system?

 Will implementation of the use case involve higher-than-average
technical risk (e.g., excessive data rate or data storage, interfacing with
a new external system for the first time)?

The following list shows the use cases defined as architecturally-significant for the System.

 1.1 System Receives Station Data – This use case is architecturally
significant because it deals with the storage of data in the internal
format and the timeliness for transferring data to the Data Processing
Partition.

December 2015

14

 1.4 System Acquires Meteorological Data - This use case is
architecturally significant because it deals with acquisition, storage and
processing of meteorological data.

 2.3 System Detects Events using Waveform Correlation – This use
case is architecturally significant due to large amounts of waveform
data being processed and the impact on waveform data storage and
management.

 2.6 System Builds Events using Signal Detections – This use case is
architecturally significant due to the potential of integrating new
algorithms to build events.

 2.12 System Predicts Signal Features – This use case is
architecturally significant due to the processing and memory resource
consumption of 3D earth model calculations.

 3.2 Refines Event – This use case is architecturally significant
because it captures the interplay between all of the Analyst activities.

 3.2.8 Compares Events – This use case is architecturally significant
due to the introduction of the capability to compare events within an
operational context.

 3.3 Scans Waveforms and Unassociated Detections – This use case
is architecturally significant due to the user interface design
considerations for displaying and interacting with waveforms and
unassociated signal detections.

 3.5 Marks Processing Stage Complete – This use case is
architecturally significant due to expected changes to the analysis
process (including operational concept changes).

 5.3 Views System Results – This use case is architecturally significant
because it provides an interactive interface for external customers.

 6.3 Defines Processing Sequence – This use case is architecturally
significant due to the fundamental changes to the system it introduces
including the interactive interfaces provided and the specification of the
elements that are available for sequence customization.

 6.7 Views System Configuration History – This UC is architecturally
significant because it covers a new feature of the system to store and
view all system configuration information.

 7.1 Analyzes Mission Performance – This use case is architecturally
significant because it provides the interface for measuring System event
detection performance and tuning the system.

 8.2 Controls the System – This use case is architecturally significant
due to the System's timeliness requirements to start and stop the System
and to transfer mission assignment from the Primary to the Backup.

December 2015

15

 8.5 Views Event History – This UC is architecturally significant
because it covers review of stored versions of event hypotheses.

 9.4 Replays Test Data Set – This use case is architecturally
significant due to the introduction of new capability and the concept of
playing back time synchronized captured data.

 11.2 Develops New Algorithms and Models – This use case is
architecturally significant as the Researcher requires access to System
data and algorithm implementations used in pipeline processing and
interactive processing through command line interfaces and a Common
Object Interface (COI).

 13.2 Performs Standalone Analysis – This use case is architecturally
significant since it requires the System architecture to support
configurable software distributions at various scales of data processing,
computing hardware, and personnel.

 14.5 Performs Expert Technical Analysis – This use case is
architecturally significant due to the inclusion of data and software
provided by member states.

4.2 Logical View
The Logical View depicts Analysis Classes and their behavior in the context of specific use
cases. The functionality described in a use case is mapped to Analysis Classes in Use Case
Realizations. The following sections describe Analysis Classes identified in the architecture
and the frameworks in which they operate.

4.2.1 Control-Based Architecture
A concern in this effort is the requirement to decouple applications so they can be developed
and replaced without affecting other parts of the system. Processes within the System may
be initiated in two ways: automatically, in response to new or changed data, or interactively,
in response to user commands. The system initiates automatic processing to analyze station
data, detect signals and group signal detections into events. System users invoke interactive
processing to also detect signals and group signals into events. Further analysis is performed
to estimate the location and magnitude of events and screen based on the event source type.
After interactive processing is completed, the system may initiate further automatic
processing to compute other supporting information for the events formed by the operators.
Similar analysis is performed in automatic and interactive processing so the system is
designed to invoke the same processing components during automatic and interactive
processing.

Another design concern is that the system should facilitate the modification or replacement
of processing components and permit the processing components to be reordered or linked in
alternate sequences. These capabilities are supported by decoupling processing components
to the maximum extent and limiting the communication between components. The
Processing Sequence Control Mechanism initiates automatic processing in Control classes
based on rules defined by privileged users. Control classes operate on data stored in the

December 2015

16

system and store the processing results back in the system, limiting the information passing
between Control classes.

The approach taken in here is to employ a concept called Control-Based Architecture (CBA).
In essence, CBA dictates that Control classes are the logical units of control in the system.
In more formal terms, CBA is embodied by the following principles:

 All significant application logic is encapsulated by Control classes (not
Utility, Entity or Display classes).

 Control classes are started and stopped by an external controller
program, either the System Control Mechanism or the Processing
Sequence Control Mechanism depending on the lifecycle of the
Control class.

 Control classes retrieve inputs from the OSD, delegate algorithmic
computations to Plugin classes, and store results in the OSD.

 Display classes retrieve data from the OSD.

 Control, Display, and Plugin classes are the only classes that utilize
IPC.

Adherence to these principles provides several important benefits, including the following:

 Provides encapsulation of application logic.

Control classes are designated as the controllers for well-defined portions of application
logic (e.g. event location, event magnitude). The Processing Sequence Control Mechanism
initiates the Control classes and coordinates application logic among the Control classes.
This approach limits the dependencies between Control classes. Control classes retrieve
data from the OSD, implement processing logic either directly or via delegation to Plugin or
Utility classes, and then return results to the OSD to signal the Processing Sequence Control
Mechanism that the processing unit is complete. Encapsulating all of the sequencing
responsibility in the Processing Sequence Control Mechanism rather than spreading that
responsibility across all the Control classes supports the ability to fully configure processing
sequences.

 Application logic can be relocated easily.

In essence, each Control class represents a relocatable unit of application logic which can be
located in any process, as needed. A given process might contain multiple Control classes if
each has little processing to perform. Alternatively, a process might be dedicated to a single
Control class to ensure maximum single-processor performance. The ability to relocate
application logic as needed is a key capability for providing the flexibility to meet unknown
future processing requirements with minimal source code changes.

 Class dependencies are greatly simplified.

Control, Display and Plugin classes perform communication, if required; though Interface
classes. Therefore Control, Display and Plugin classes never depend directly on one
another. Besides facilitating relocatability (as described in the previous bullet), this results in
a reduction in dependencies between classes. This reduction in dependencies, in turn,
facilitates the ability to reorder or replace processing units.

December 2015

17

4.2.2 Domains
The System is composed of the following domains. These domains provide a logical
organization for the Analysis Classes of the system.

 Data Acquisition – The Data Acquisition Domain contains classes for
handling data reception from various data providers, forwarding the
data, and storing the data for subsequent access by the IDC System.
The System acquires data from stations, from external data centers, and
from other sources. Data can be acquired in a variety of formats
including CD-1.0, CD-1.1, IMS-1.0, SEED, and miniSEED.

 Data Quality – The Data Quality Domain contains classes for
detecting errors in incoming waveforms that can lead to problems with
processing and analysis. The data containing errors is stored and
masked to prevent further processing. System users can override the
system’s quality determination. Data quality errors include data gaps,
amplitude spikes, repeated amplitude values, linear trends and invalid
gain.

 Signal Enhancement – The Signal Enhancement Domain contains
classes for applying signal processing techniques to enhance the signal
content and reduce the noise content of waveform data. The techniques
include filtering, beamforming, and three component waveform data
rotation.

 Signal Detection – The Signal Detection Domain contains classes for
using various techniques to identify signals of interest. Signal
detections are stored and further processed to identify events.

 Signal Feature Measurement – The Feature Measurement Domain
contains classes for measuring features associated with a signal
detection, e.g. arrival time, back azimuth, horizontal slowness,
amplitude, frequency content, etc. The feature measurements are used
to analyze the signal detection.

 Signal Detection Association – The Signal Detection Association
Domain contains classes for using observed and predicted signal
detection features to associate signal detections with either new events
or existing events.

 Waveform Correlation – The Waveform Correlation Domain contains
classes for finding new events by matching current waveforms to
waveforms of known historical events. A matching new event is
created at the location of the historical event.

 Event Conflict Resolution – The Event Conflict Resolution Domain
contains classes for resolving cases where signal detections are
assigned to more than one event. Each signal detection should be
associated to at most one event.

December 2015

18

 Event Location – The Event Location Domain contains classes for
determining an event's spatial location and temporal location and
uncertainties.

 Event Magnitude – The Event Magnitude Domain contains classes for
estimating the size of an event by combining the available event
magnitudes computed from individual stations.

 Moment Tensor – The Moment Tensor Domain contains classes for
applying long period waveform modeling to determine a moment tensor
representation of the source of seismic events. The moment tensor
quantifies both the event size, and the event type (earthquake vs.
explosion).

 Event – The Event Domain contains classes for tracking general event
information not addressed by other domains. This includes classes for
tracking event version history information, finding and tracking events
of interest, performing event searches, and computing event quality.

 Performance Monitor – The Performance Monitor Domain contains
classes for tracking both system performance and monitoring mission
performance. The system performance is characterized by disk usage,
CPU load, network traffic, etc. The mission performance is
characterized by waveform data availability, station signal detection
rates, network event detection rates, etc.

 Signal Feature Prediction (includes physics models and historical
models) – The Signal Feature Prediction Domain contains classes for
calculating predicted values and uncertainties for observables associate
with particular source to receiver paths. E.g. seismic travel time,
azimuth, and slowness.

 Geospatial Processing – The Geospatial Processing Domain contains
classes that access information that identifies the geographic location
and characteristics of natural or constructed features and boundaries on
the Earth, typically represented by points, lines, polygons and/or
complex geographic features, and may contain information attached to
a location. Geospatial data is often accessed, manipulated or analyzed
through Geographic Information Systems.

 Station – The Station Domain contains classes that define the
installation where monitoring sensors are installed. Multiple sensors
can be installed at the same station. An array is a group of stations.

 System Configuration – The System Configuration Domain contains
classes that describe the complete set of system parameters that define
the operation of the System software. Examples include sensor
thresholds, filters (see filter, waveform), the particular version of an
earth model in use and processing sequences Each instance of a
system configuration is saved so the state of all parameters at any time
can be recalled.

December 2015

19

 Process Control – The Process Control Domain contains classes that
define the configuration and sequencing of processing components in
the system.

 Data Distribution – The Data Distribution Domain contains classes
that provide access and distribute data to external customers of the
system.

 Testing – The Testing Domain contains classes that create, store, and
run system tests, compare system test results to expected results, and
test the system via replay.

4.2.3 Analysis Classes
Analysis Classes are the fundamental building blocks of use case realizations. The Use Case
Realizations map the system functionality described in Use Cases onto the Analysis Classes.
Through this process each Analysis Class contains a high-level description of the
functionality the class is responsible to implement. The Analysis Classes in turn become the
foundation for organizing the software implementation.

4.2.4 Types of Analysis Classes
The class stereotypes below are used to designate the responsibilities of the analysis classes
used in modeling Use Case Realizations. The stereotypes used are Control, Plugin, Utility,
Interface, Plugin Interface, Boundary, Entity, Display, Configuration and Mechanism.
Numerous other stereotypes are possible at the implementation or source code level (e.g.,
proxy, adaptor, singleton, etc.). At the architectural level, however, the concern is only with
describing the essential building blocks of the system at a rather broad, high level. Thus,
within the architecture, nearly all Analysis Classes fall into one of the categories below. In
the architecture, all classes are categorized into one of the following stereotypes:

 Control – A class that operates in an event-driven manner and
encapsulates some significant piece of logic, typically application-level
logic. Control classes may be instantiated as a separate process or set
of replicated processes (e.g. for performance). Control classes are
designed to support separate instantiation but may in fact be combined
into processes with other classes (e.g. Display classes, other Control
classes) for performance reasons. The specific mapping of control
classes to processes is specified in the Process View.

 Plugin – A class that encapsulates an isolated portion of the system
which can be updated independently. Plugins may identify portions of
the system for which multiple different implementations exist, such as
key algorithms. A Plugin Interface class defines the common
interface for all implementations of Plugin class behavior. Plugin
classes are designed to have simple interfaces to facilitate development
and integration of new implementations while limiting the impact to the
remainder of the system. To support this relative isolation, a Plugin
class may only depend on Plugin Interface classes and the OSD.
Plugin classes are highly scalable and configurable to meet system
performance constraints. Plugin classes may be deployed in the same

December 2015

20

process as the Control class using the Plugin or in a separate process.
The specific mapping of Plugin classes to processes is specified in the
Process View.

 Utility – A class that encapsulates program logic, sometimes at the
application-level. Unlike Control classes, Utility classes are not
designed to be instantiated as separate processes; instead, they are
designed to be collocated in the same process with Control or Display
classes. Their purpose is to assist that Control class in carrying out its
function. A given Utility class may be used by several Control
classes. Examples are math libraries and System Clock.

 Interface – A class that abstractly represents a defined interface to a
class. Unlike Control and Utility classes, Interface classes have no
intrinsic behavior built into them; they are simply used to describe
messages and data communicated between classes that may potentially
be instantiated is different processes. Control classes send data to
other classes that may exist in separate processes via interfaces by using
and realizing interfaces. In particular, a Control class that sends
messages according to an interface is said to use that Interface, while a
class that receives messages according to an interface is said to realize
that Interface.

 Plugin Interface – A class that abstractly represents the defined
interface to a Plugin class. A Plugin Interface class is similar to an
Interface class but the Plugin Interface class is only realized by a
Plugin class. Classes invoking a plugin always communicate with the
Plugin class through a Plugin Interface class rather than directly
calling operations on the Plugin class.

 Boundary – A class that abstractly represents an external system or
actor (i.e., user). Much like Interface classes, Boundary classes are
abstract and therefore possess no intrinsic behavior. Boundary classes
can thus be viewed as a special kind of Interface class; one in which
the sender or receiver is always external to the System. Boundary
classes may represent any external actor including users, device
interfaces, or machine-to-machine interfaces (TCP/IP, File Transfer
Protocol (FTP), etc.).

 Entity – A class that encapsulates data rather than logic. Entity classes
are typically simple classes for holding data. Because their internal
state is fully self-contained, they may be persisted in a database or
passed between processes as arguments of inter-process function calls.

 Display – A class that represents a user interface display. Display
classes are similar to Control classes in that they run in an event-driven
manner, and may be instantiated within processes in various
combinations (as specified in the Process View). However, unlike
Control classes, Display classes are dynamically created as needed
according to events (e.g., a button press), a distinction important

December 2015

21

enough to warrant the separate category. Display classes also can be
started and stopped by an external control process.

 Configuration - A class representing a set of related configuration
settings defining the default algorithm parameters used when Control
and Plugin classes are invoked. Configuration classes support the
ability to define parameters based on geographic region, time of year,
time of day, network, station, channel, phase, observable type and
processing stage. Configuration classes contain version information
such as installation time, the system release that included the
configuration change, etc. Configuration classes may be grouped into
logical collections (e.g. processing sequence configuration, station
processing configuration, location configuration, etc.) to organize the
settings into general categories. This makes it easier for System Users
to navigate the System configuration to find particular configurations.
The System Maintainer sets configuration settings offline and installs
them on the system.

 Mechanism – A Mechanism class representing a basic service or
framework required by many subsystems across the system. Examples
include Inter-process Communications, Processing Sequence Control,
or Object Storage and Distribution—fundamental components which
make up the framework upon which the application is constructed.

4.2.5 Use Case Realizations
The process of analyzing use cases (which have an outward focus) and elaborating how the
system will accomplish them internally via cooperating Analysis Classes is a process referred
to as use case realization and is the primary activity performed by the Architecture team. The
result of this activity is a complete and detailed set of use case realizations covering the entire
set of use cases defined for the system.

Use Case Realizations are particularly important in the development of architecture. A Use
Case Realization describes the collaboration of analysis classes to implement the functions
defined in the Use Cases. The collection of Use Case Realizations in turn define the
structure of the architecture needed to implement the significant features of the system. Use
Case Realizations also help identify common patterns of interaction which form the basis for
defining architectural patterns and mechanisms. Once the Use Case Realizations are
developed they become the basis for detailed software design.

4.2.6 Mechanisms

4.2.6.1 System Control Mechanism
In a distributed system it is important to ensure all processes are fully initialized and ready to
function before allowing data to flow into the system. Processes may need to interact with
other processes to complete initialization. Similarly, when powering down it is important
that processes are staged-down in a controlled manner to ensure the system is not left in an
inconsistent state. Because of these issues, a mechanism for coordinating the startup and
shutdown of processes across the system is required. This mechanism is known as System
Control. This mechanism also monitors processes to ensure they are executing properly.

December 2015

22

4.2.6.2 Processing Sequence Control Mechanism
The System provides the capability to execute pre-defined processing sequences for
automatic data processing. This capability is supported by the Processing Sequence Control
mechanism, which is responsible for managing the execution of processing sequences based
on definitions installed in the system. The Processing Sequence Control mechanism and
select Processing Sequences are described further in the IDC Use Case Realization reports.

The Processing Sequence Control mechanism executes Processing Sequences based on
triggering events in the system. Example triggers include the following:

 Timer events – Processing Sequences may be executed at pre-configured
times or intervals (e.g. periodically checking for new waveform data to
process).

 Service Invocation – Processing Sequences may be executed based on
invocation of the Processing Sequence Control mechanism’s service interfaces
(via API or message-based service call). This type of trigger supports
execution based on operator commands and other events in the system – e.g.
for post-processing of created/modified data entities (signal detections, event
hypotheses, events, etc.), processing stages, etc.

 Data Subscription Callbacks – The Processing Sequence Control
mechanism maintains subscriptions for select data updates in the system that
require a processing response (e.g. the creation of a new event). These
subscriptions and the corresponding Processing Sequence(s) are installed as
configuration items in the system. When the Processing Sequence Control
mechanism receives callbacks for configured data subscriptions, it invokes the
associated Processing Sequence(s).

The Processing Sequence Control mechanism supports a scalable, distributed processing
model for execution of processing sequences. As depicted in Error! Reference source not
found., Tasks executed by the Processing Sequence Control mechanism may be
implemented as service invocations routed to control classes running in separate processes,
potentially on separate hosts within the system. This approach allows for parallel execution
of Activities within a Processing Sequence across multiple processes and nodes.

4.2.6.3 Object Storage and Distribution Mechanism
A central component of the System is the persistent storage of an extensive history of sensor
and station data, station configuration data, significant signal detections and events. This
information is stored in a RDBMS and, in previous versions of the system; access to the data
was achieved by directly interacting with the RDBMS query language. This direct form of
access resulted in strong dependencies between the application software and tools and the
database structure, resulting in significant impact when modifying or expanding the
underlying database schema. A design goal for the re-engineered system is to isolate the

December 2015

23

application software from the underlying database schema to limit the impact of changing the
database structure.

This isolation will be achieved through a mechanism called the Object Storage and
Distribution Mechanism or OSD. The OSD will be responsible for persisting and retrieving
data in the System. SQL calls from software applications will be replaced by calls to the
OSD to retrieve the data. The OSD will be responsible for translating the data calls into
queries on the underlying RDBMS. This pattern of abstracting the database interface is
known as Data Access Object design pattern. The definition of the interface to the persisted
data is described in the Common Object Interface (COI).

The OSD will also provide a subscription service to notify any software application that has
registered interest in a data object when the data object is modified. Data often needs to be
pushed or distributed to interested clients (subscribers) at the time that it is stored in the
database (i.e., persisted), a pattern commonly referred to as publish/subscribe. The OSD
may cache data in memory in addition to database storage to decrease access time to retrieve
the data. The OSD will support the typical database functions Search, Create, Retrieve,
Update, Delete (or SCRUD). The Delete operation will be limited to only system
administrators. Instead of delete other operators will be able to mark an object as removed.
Removing an object will mark the object as invalid but keep a copy in storage for review or
further analysis.

The following figure illustrates the components of the OSD Mechanism developed during
protyping in Iteration E2. The mechanism provides to basic functions: Stored Data Access
and Data Distribution. The figure shows the interaction of Data Access Objects with Entity
Classes and the ORM to provide data storage and access. The figure also shows access to the
stored data via scripting languages. In addition the figure shows Data Distribution
implemented via Publish/Subscribe Notifications or via Caching. This model of the OSD
Mechanism is the basis for the executable architecture and will evolve from further
prototyping.

December 2015

24

Figure 4-1. OSD Components

4.2.6.4 Inter-Process Communication
As described previously, the OSD Mechanism is the primary means for exchanging data in
the System. When communication is required between Control, Display and Plugin classes
the communication will be implemented via inter-process communication or IPC. Because
of the highly distributed nature of the System, limiting the use of IPC will support modifying
the processing sequence and replacing Control or Plugin classes. When used, the IPC
mechanism supports three flavors or patterns of communication, described below:

 Asynchronous – A type of call where the caller does not block when a message is
sent. This allows the caller to continue processing incoming messages
immediately, however, the caller does not have any knowledge as to when or even
if the receiving process actually received the message. In fact there could be any
number of receiving processes listening for the message, including none. Because
communication is essentially one-way, there is no way for the receiver to provide
a return value for the message (other than sending a separate return message,
independent of the first). This type of communication is sometimes described as
fire-and-forget or broadcast. A limitation of this type of communication is
messages could be lost if the receiver process crashes and if the sending process
does not buffer the message.

Implements	

the	COI

Object	Storage	&	Distribution	(OSD)	Mechanism

Stored	Data	Access

DAOs

Entity	Classes

Data Store

Data	Distribution

ORM	(e.g.	COTS)

Caching	(TBD)

Pub/Sub Notification

Scripting	Access	

(e.g.	Python)

December 2015

25

 Synchronous – A type of call where the caller is blocked when a message is sent
until the receiving process receives the message and sends back a return value. In
this type of call there must be exactly one and only one recipient. If the recipient
is not there or fails during processing of the message then the caller, is blocked
waiting for the call to finish. For this reason Control classes tend to avoid this
type of communication unless required.

 Request/Reply – A type of call where the caller is not blocked, but can receive
return data from the recipient at a later time via a callback. This pattern of
communication is used frequently because it provides the benefits of both
Asynchronous messaging (no blocking) and Synchronous messaging (return of a
value). In particular, Request/Reply communication is used heavily for
communication between Display classes and Control classes. In this situation the
Display class typically makes a request and then displays the result when the
reply is subsequently received. This pattern is ideal for the user interface, which
cannot afford to be blocked waiting for the reply but also needs to provide
confirmation or feedback to the user regarding the request.

 Publish/Subscribe – In a publish/subscribe application, senders publish messages
to a named topic that serves as a routing key for messages. Consumers may
subscribe to one or more publish/subscribe topics in order to receive messages
published to those topics. All subscribers to a given topic will receive copies of
every message sent to that topic. Publish/subscribe is typically implemented as an
Asynchronous pattern where publishing and receiving messages are decoupled.

Two messaging technologies have been selected to support IPC for the Executable
Architecture Prototype.

 AMQP Messaging – The Advanced Message Queuing Protocol is a widely-used
wire protocol standard for message oriented middleware. It supports all of the
messaging patterns described above. RabbitMQ is a highly popular, AMQP-
compliant, open-source messaging solution that has been selected for use in the
executable architecture prototype. Specifically, RabbitMQ will be used to support
publish/subscribe distribution of data in support of OSD subscriptions, as well
as for network IPC service calls among control classes, displays and mechanisms.
The selection of RabbitMQ is based on favorable benchmark performance, cross-
language support, and its prevalence among messaging solutions.

 REST-ful Websevices – As an second network IPC option, the executable
architecture prototype will include a REST/HTTP solution. This technology may
be used as an alternative for remote service invocation using the claimcheck
pattern for data passing (see Section 4.2.7.1 for more on the claimcheck pattern).
In addition, the prototypining effort will explore the use of this technology for
external access to data stored via the OSD, providing a language-agnostic data-as-
a-service interface. The Jersey open-source framework has been selected to
support this type of communication for Java software. Frameworks for other
languages have not yet been selected.

December 2015

26

4.2.7 Patterns
Patterns describe common architectural approaches to addressing various tasks in the system.
Patterns describe common interactions between the application software and the basic
mechanisms. These patterns emerge from development of the Use Case Realizations and
provide some of the fundamental building blocks for the system architecture.

4.2.7.1 Data Access
Control classes interact with the Object Storage and Distribution Mechanism to access
persistent data in the system. The OSD Mechanism implements get and store operations that
provide access to data. The Control class passes the attributes identifying the object to
retrieve to the OSD Mechanism and the requested object is returned to the Control class.
The Control class modifies the requested object and then calls the OSD Mechanism to store
the object. The Control class is not dependent on the underlying persistence method or
database. The OSD Mechanism also provides a local store operation that updates the object
but the update is not visible globally. The selection for storing globally or locally is defined
in a Processing Context object that is passed to the OSD Mechanism as part of the store
operation. The OSD Mechanism can also notify Control or Display classes when an
individual object or collection of objects is modified. Control or Display classes register a
callback for the object or collection of interest with the OSD Mechanism and the OSD calls
the callback when the object or collection is modified. A common example occurs when a
Display class provides a list of events in the system. The Display class registers a callback
with the OSD Mechanism for all events. The OSD Mechanism calls the Display when new
events are created or modified and the Display class updates the user interface. Control or
Display classes unregister when the notification is no longer required.

For subscription-based OSD data callbacks that occur over a network (e.g. between processes
&/or nodes), the executable architecture prototype will use a pattern similar to the
Claimcheck Enterprise Integration Pattern (EIP). [2] Rather than serializing and transmitting
the data entity to subscribing processes directly, under this pattern, the OSD will store the
entity, making it globally accessible, and will transmit a ‘claimcheck’ message to
subscribers. The claimcheck message will include reference information sufficient for the
subscriber to retrieve the entity from the OSD upon receipt of the message. This pattern
provides an efficient means of communicating data between processes, even for large data
entities.

4.2.7.2 Display Generation
Display classes are the primary point of interaction between the user and the System. They
are how the System presents information to the user, and how the user provides input to and
requests actions on the System. Display classes are typically opened when requested by the
user and closed when the user has completed the interaction. Display classes request and
receive data from the OSD either by directly requesting information or subscribing for
updates. Display classes synchronize their views with changes made to the underlying data
model. Display classes also pass user requests to Control classes through IPC.

The design of the Analyst workspace depends on Use Case Realization Display classes, Use
Case Storyboard mockups, and Prototyping class implementations for Analyzes Event UC,
Refines Event UC, Scans Waveforms and Unassociated Detections UC, and several other
children UCs. Each Display class is responsible for different subsets of information that

December 2015

27

make up the workspace. For example, the Analyzes Event Display is responsible for
displaying the list of events, the Selects Data for Analysis Display displays the operator
workflow, the Refines Event Display shows the detailed information about an individual
event, the Enhances Signals Display shows the waveforms during the time interval of an
event, and the Detects Signals Display shows the signal detections associated with an event.

In Use Case Realizations, Display classes are primarily modeled one per use case to capture
a summary of the information transferred via the user interface for that use case. Display
classes are also modeled to reflect common user interface functionality shared between Use
Case Realizations. Display classes do not represent the actual layout of screens or windows
in the user interface, and are presented as a means of communicating the interactions
between users, Display classes, Control classes, and Mechanisms(like the OSD).

The design and layout of Display classes along with input action behavior are addressed in
Use Case Storyboards. Storyboard mockups aim to provide a visual representation of the
flow of action between a user and the System for a given Use Case.

Actual class implementations of Display classes are handled in Prototyping. Here,
functionality, visual appearance and layout described by Use Case Realizations and Use Case
Storyboards materialize as constructed class objects created in the chosen development
environment that best suits the needs and requirements of the System. Prototyping also takes
this development time to continue exploring risks, relationships, and details not addressed in
Use Case Realizations and Use Case Storyboards. Prototyping is currently realizing Display
class design and behavior using the Netbeans Rich Client Platform (RCP). The Netbeans
RCP Prototype leverages capabilities provided by RCP and Java for customizable Display
class layout, modular plugin framework, context-sensitive actions, and Display class data
synchronization (See Draft Netbeans UI Design Notes for more details).

Further prototyping has been done to explore the possibility of web-based Display classes,
accessible via a standard browser or browser-based tool. The Ozone Widget Framework
(OWF) is a web framework for managing UI layout. It allows for multiple web views to be
laid out in a customizable fashion. Display classes then consist of an HTML/JavaScript view
loaded inside of OWF. Access to Control classes would occur via RESTful AJAX-based
web-services against a server back-end. Data synchronization between views can occur
through WebSocket technology, a web standard allowing for full-duplex communication
between the server and browser client. Using WebSockets, changes to data can be pushed
onto the browser views, which can update accordingly.

4.2.7.3 Algorithms for Automatic and Interactive Processing
The System has the requirement to use common algorithms during automatic and interactive
processing. This is achieved by the Processing Sequence Control Mechanism invoking the
Control class for automatic processing and a Display class invoking the same Control class
for interactive processing. The System Maintainer sets the default Configuration used
during automatic processing while Analysts can select to override the settings used during
interactive processing. When first started by System Control both Control and Plugin
classes use Configuration classes to determine their default settings. The Control and
Plugin classes will use these defaults for any settings that are not explicitly overridden in a
particular call to the Control or Plugin. The system associates processing results (e.g.
events, signal detections) with the settings used to create those results. Where applicable, the

December 2015

28

system uses these settings rather than the system default Configuration when invoking
additional automatic processing to further refine the results. This ensures Analyst settings
supercede default settings.

A further requirement is for the system to facilitate the update and replacement of algorithms.
The architecture approach for this capability is to identify likely candidates for update and
replacement and to model these candidates using Plugin classes. The Plugin class is
invoked by a Control class through a Plugin Interface class. This isolates visibility of the
Plugin class from the rest of the system. Figure 4-2 shows the relationship between Control,
Plugin Interface, and Plugin classes. The Plugin class does not interact directly with other
Control or Display classes in the system but operates on data provided via the Plugin
Interface class. This limits requirements on the design of the Plugin class from
implementing the control logic and data access logic developed for the entire system.
Control classes can select among multiple Plugin classes that implement the same function
by designating a configuration parameter to identify the desired Plugin.

Figure 4-2. Relationship between Control Class and Plugin Class
The following sequence diagrams describe the pattern of interactions between Control
classes and Plugin classes. This pattern is repeated in Use Case Realizations where Plugins
are used. All the details of the interactions may not be repeated in the individual UCRs when
they do not differ from the pattern described here.

December 2015

29

Figure 4-3. Plugin Initialization
This sequence diagram shows how Plugin classes are initialized. If the Plugin class is called
by a Control class the Control classes initializes the Plugin classes when the System starts.
The System Control mechanism calls each Control class to initialize. The Control class
retrieves the default configuration from the Object Storage and Distribution Mechanism and
creates the parameters that will be used to call the Plugin classes. The Control class also
identifies the set of Plugin classes that implement the Control class functionality from the
parameters and calls each Plugin class to initialize. If the Plugin is called as a service, the
Plugin class is started by the System Control Mechanism.

December 2015

30

Figure 4-4. Plugin Invocation in Automatic Processing

This flow describes how Control classes invoke Plugin classes to execute algorithms or
implement models during automatic processing. The Processing Sequence Control
Mechanism calls the Control Class when triggering criterion are satisfied with data
references for the information to be processed and the processing context identifying the
processing stage. The Control Class determines the Plugin Class to call and the parameters
from the processing context and the data references. The Control Class calls invoke passing
the data references and the parameters through the Plugin IF class to the Plugin Class. If the
Plugin Class requires any plugin-unique parameters the Plugin Class determines those
parameters from the data references. The Plugin Class then computes the result and passes
the result back to the Control Class. The Control Class then stores the result based on the
processing context and notifies the Process Sequence Mechanism of the completion status.

December 2015

31

Figure 4-5. Plugin Invocation in Interactive Processing

This sequence diagram shows how Control Classes and their associated Plugin Classes are
invoked interactively. The Display Class retrieves the default or last used parameters from
the Control Class based on the processing context and the data references. The Control Class
groups the parameters for the Control Class with the Plugin-unique parameters from the
appropriate Plugin Class and returns the parameter set to the Display Class. The Display
Class presents the parameter values to the user and the user modifies selected values and
requests the System to compute based on the modified set of parameters. The Display Class
calls the Control Class with the parameters and the Control Class invokes the appropriate
Plugin Class passing the parameters similar to automatic processing. The result is passed
back to the Display Class.

Plugin classes may create results containing information relevant to provenance,
performance monitoring, tuning, etc. specific to the plugin implementation that go beyond
what the Plugin is required to return by the Plugin Interface. Since the implementation
specific results cannot be known a priori, each Plugin is responsible for defining Entity
classes representing the plugin specific results and associating them with the results r eturned
via the Plugin Interface.

December 2015

32

Example Plugin Interface classes are shown in several UCRs, e.g., the System Refines
Event Location, System Detects Signals, and System Builds Events using Signal Detections
Use Case Realizations. Most of the Plugins perform calculations but some of the Plugin
classes implement a Plugin Interface designed to provide data used in other calculations
(e.g. the Earth Model Plugin provides values to Signal Feature Predictor Plugins). The table
below lists the Plugin Interface classes that are currently in the Analysis Model. In some
cases the Analysis Model also includes particular specializations of a Plugin Interface that
may exist in the System to satisfy system requirements while in other cases the Analysis
Model only includes the basic Plugin Interface.

Table 4-1. Analysis Model Plugins

Plugin Interface Plugin Specializations Defined in UCR Used in UCR

Signal	Detector System	Detects	Signals System	Detects	Signals,	
Detects	Signals

Signal	Onset	Time	
Refiner

AIC	Signal	Onset	Time	
Refiner,	Waveform	
Cross-Correlation	
Signal	Onset	Time	
Refiner

System	Detects	Signals System	Detects	Signals,	
Detects	Signals

Signal	Detection	
Associator

Match	Signal	Detection	
Template

System	Builds	Events	
using	Signal	Detections

System	Builds	Events	
using	Signal	Detections,	
Builds	Event	(UCR	not	
modeled)

Waveform	Correlation	
Event	Detector

System	Detects	Events	
using	Waveform	
Correlation

System	Detects	Events	
using	Waveform	
Correlation,	Builds	
Event(UCR	not	
modeled)

Event	Locator	Plugin	IF Master	Event	Locator System	Refines	Event	
Location

System	Builds	Events	
using	Signal	Detections,	
System	Refines	Event	
Location,	Refines	Event	
Location

Signal	Feature	
Predictor

System	Predicts	Signal	
Features

System	Predicts	Signal	
Features,	System	Builds
Events	using	Signal	
Detections,	System	
Refines	Event	Location,	
Detects	Signals	(not	
modeled	in	UCR),	
System	Refines	Event	
Magnitude	(UCR	not	
modeled),	Refines	
Event	Magnitude(UCR	
not	modeled),	Monitors	
Mission	
Processing(UCR	not	
modeled)

December 2015

33

Earth	Model System	Predicts	Signal	
Features

System	Predicts	Signal	
Features,	System	Builds	
Events	using	Signal	
Detections,	System	
Refines	Event	Location,	
Detects	Signals	(not	
modeled	in	UCR),	System	
Refines	Event	Magnitude	
(UCR	not	modeled),	
Refines	Event	
Magnitude(UCR	not	
modeled),	Monitors	
Mission	Processing(UCR	
not	modeled)

—END OF TABLE—

December 2015

34

Additional Plugin Interface classes will be created as UCR modeling progresses. The
following table lists plugins that may be modeled in the future.

Table 4-2. Analysis Model Plugins

Plugin Interface Plugin Specializations Defined in UCR Used in UCR
Multiple	Event	Locator System	Refines	Event	

Location
System	Refines	Event	
Location,	Performs	
Multiple	Event	Location

Atmospheric	Model	
Builder

System	Acquires	
Meteorological	Data

System	Acquires	
Meteorological	Data

Waveform	Quality	
Checker

System	Determines	
Waveform	Data	Quality

System	Determines	
Waveform	Data	Quality,	
Determines	Waveform	
Data	Quality

Signal	Feature	
Measurer

System	Measures	Signal	
Features

System	Measures	Signal	
Features,	Measures	
Signal	Features

FK	Feature	Measurer System	Measures	Signal	
Features

System	Measures	Signal	
Features,	Measures	
Signal	Features

Polarization	Feature	
Measurer

System	Measures	Signal	
Features

System	Measures	Signal	
Features,	Measures	
Signal	Features

Waveform	Filter System	Enhances	
Signals

System	Enhances	
Signals,	Enhances	
Signals

Waveform	Rotator System	Enhances	
Signals

System	Enhances	
Signals,	Enhances	
Signals

Waveform	Beamer System	Enhances	
Signals

System	Enhances	
Signals,	Enhances	
Signals

Moment	Tensor	
Evaluator

System	Evaluates	
Moment	Tensor

System	Evaluates	
Moment	Tensor,	
Evaluates	Moment	
Tensor

Magnitude	Estimator Network	Magnitude	
Estimator,	Station	
Magnitude	Estimator,	
Relative	Magnitude	
Estimator

System	Refines	Event	
Magnitude,	Refines	
Event	Magnitude

System	Refines	Event	
Magnitude,	Refines	
Event	Magnitude

Phase	Labeler System	Measures	Signal	
Features

System	Measures	Signal	
Features,	Measures	
Signal	Features

Event	Conflict	Resolver System	Resolves	Event	
Conflicts

System	Resolves	Event	
Conflicts

December 2015

35

Similar	Event	Finder System	Finds	Similar	
Events

System	Finds	Similar	
Events,	Compares	
Events

Analyst	Performance	
Metric	Calculator

Views	Analyst	
Performance	Metrics

Views	Analyst	
Performance	Metrics

Event	Quality	
Calculator

System	Builds	Events	
using	Signal	Detections

System	Builds	Events	
using	Signal	Detections

Station	Performance	
Calculator

System	Builds	Events	
using	Signal	Detections

System	Builds	Events	
using	Signal	Detections,	
System	Refines	Event	
Location

Network	Performance	
Calculator

System	Builds	Events	
using	Signal	Detections

System	Builds	Events	
using	Signal	Detections

Event	Comparer Analyzes	Mission	
Performance

Analyzes	Mission	
Performance,	
Compares	Events

Bulletin	Comparer Analyzes	Mission	
Performance

Analyzes	Mission	
Performance

Data	Provenance	
Analyzer

Views	Event	History Views	Event	History,	
Analyzes	Research	
Events

—END OF TABLE—

4.2.7.4 Event Analysis Classes
Events are the fundamental output of the System. The following diagram shows the
relationships between Events, Signal Detections and Waveforms. An Event is the occurrence of
some source of energy within the Earth's body, oceans, or atmosphere that can be detected by
seismic, hydroacoustic, and/or infrasonic sensors. The Event class is composed of a set of Event
Hypotheses each representing a different analysis of the Event. Each Event Hypothesis contains
a summary of the contributing stations, associated signal detections, and a set of location
solutions for the Event along with the parameters used to analyze the Event. One of the Event
Hypotheses is the overall preferred version of the Event and represents the best available analysis
of the Event. A Waveform is either the raw or derived output of seismic, hydroacoustic, and/or
infrasonic sensors. A Signal Detection is a signal of interest. Similar to the relationship between
Event and Event Hypothesis, each Signal Detection contains a set of Signal Detection
Hypotheses representing different ways of analyzing the signal of interest. Each Signal
Detection Hypotheses is described by a time interval on a Waveform. There may be signal
enhancement techniques applied to the Waveform to help reveal the signal of interest. An
Association object represents the relationship between an Event Hypothesis and a Signal
Detection Hypothesis. An Event Hypothesis and Signal Detection Hypothesis that are associated
to each other will each have a relationship to the Association class. If the Event Hypothesis and
Signal Detection Hypothesis are later unassociated then their relationship to the Association class
is removed. The Association class retains its relationships to Event Hypothesis and Signal
Detection Hypothesis to track that the association existed in the system. Event Hypotheses and
Signal Detection Hypotheses record the history of the analysis of Events and Signal Detections

December 2015

36

and thus retain a significant portion of provenance in the system.

Figure 4-6. Event Analysis Classes

4.2.7.4.1 Event Hierarchy
One of the significant features of the System is retention of intermediate results during event
analysis. The previous system contained a limitation that only a single Event Hypothesis
could be stored for each processing stage. The system will allow Analysts to store multiple
Event Hypotheses during each processing stage as shown in the figure below. The Analyst
will designate which Event Hypothesis is the preferred version for the Event for that
processing stage. Another significant contributor to event analysis is the set of data available
to each Analyst at the time they are reviewing the event. Late arriving data can modify the
solution so a record of the data available at the time an Analyst is reviewing the Event is an
important contributor to understanding the event solution result. The set of Event
Hypotheses that compose an Event allows detailed post analysis of event formation process.

December 2015

37

Figure 4-7. Event Hierarchy

4.2.7.4.2 Processing Stages
Events progress through several stages of analysis both by the system and the Analysts. The
figure below shows a notional sequence of processing stages in the current system. The
ability to modify and define new processing sequences is a requirement for the System. To
facilitate this goal the System will provide a method of defining processing stages and the
processing sequences associated with the stage as part of the configuratation of the system,
The Processing Sequence Control Mechanism will control the processing sequence, calling
the processing sequences associated with a processing stage. The operators will control the
progression from one processing stage to another. This limits the dependencies between
each stage to allow the sequence to be modified or updated with new stages or processing
sequences

4.2.8 Key Features
The System supports these new key features to enhance the effectiveness and usability of the
new system: Undo-redo, provenance, replay, algorithm extensibility, remote ui, and Common
Object Interface (COI).

4.2.8.1 Undo-Redo
A required feature of the System is the ability for users to undo or redo commands during an
analysis session. The system maintains a buffer of user-entered commands. The user may
select to step backward or forward through the list of commands that the analyst has entered
and the analysis returns to the state associated with the selected command. This requires the
system to undo or redo both the Analyst entered commands as well as any automatic
processing initiated by the system in response to the Analyst’s commands. Each command in
the buffer is responsible for undoing and redoing the operation represented in that command.
Most commands will support undoing an operation by storing the series of changes leading

December 2015

38

up to the analysis state just before the operation is executed. To undo the operation, the
system replaces the current analysis state with the stored state. Other commands will support
undoing an operation by executing the inverse operation. This type of undo does not have to
use memory to store the analysis state but must ensure the undo operation returns the system
to the same state it was in before the operation was originally executed.

The command buffer is cleared when the Analyst saves the analysis state. This occurs when
the Analyst saves an event or saves the state of a scanning activity. Users have the capability
to save multiple copies of an event to capture key points in the analysis. Users may open
saved copies of events to review prior states or to continue analysis beginning from the prior
saved state. The system does not save the command buffer with saved events so it is not
possible for a user to open a saved event and then review the command buffer used when the
event was originally analyzed. 4.2.7.4.1 Event Hierarchy and 4.2.8.2 Provenance describe
how the system tracks event history and provenance.

4.2.8.2 Provenance
Provenance is defined as data usage providing details regarding how the data has been used
and modified and often includes information on how to cite the data source or sources. The
system provides a more extensive set of provenance information allowing more detailed
analysis and reconstruction of event analysis results. Expanded information includes records
of when waveform data was available, which processing parameters were used to evaluate an
event, and multiple saved versions of each event through each step of the analysis
process.Provenance includes records of which Entity classes (e.g Event, Event Hypothesis,
Waveform, etc.) exist in the System, when those Entity classes are created, which user or
process created those Entity classes, which prior Entity classes were used to derive the new
Entity classes, and timing information indicating when Entity classes were created and
when processing affecting those Entity classes executed. Much of provenance is captured by
storing and querying relationships between data. Examples of these relationships and queries
are storing and querying for all of the signal detections created by a particular Analyst during
a particular time interval or finding all of the events created using a particular set of signal
detections. The queries become more complicated as they traverse more relationships (e.g.
finding all events rejected in one processing stage that were created in a previous processing
stage using a signal detection created by a particular Analyst). The provenance design will
address which provenance information is captured by the system, how it is persisted, and
how it is queried when introspecting the system.

4.2.8.3 Replay
The System provides the capability to capture waveform data and replay the data through the
system to support algorithm development and testing. Also the System provides the
capability to replay user commands. Waveform replay reproduces the time sequence of data
arrival at the system. Waveform replay can recreate the situation where incomplete or
corrupted data segments are corrected by later arriving data segments. Waveform replay also
enables examination of processing late arriving data after events have been analyzed.
Command replay allows replication of System response to user interaction with the system to
allow more detailed error analysis. These capabilities are not available in the current
system. The replay capability permits higher fidelity reproduction of the operational
environment to support analysis and refinement of system performance.

December 2015

39

Waveform replay can be implemented by injecting that data into the system through a test
injection interface to emulate the external interfaces. A copy of all data received is re-sent to
the system at the appropriate time. This approach requires saving the input data stream,
copying the stream to the test injection interface, and sending the input stream to the
remainder of the system.

An alternate approach records the reception time for each segment of data as the segments
are stored. Then the test data injection process uses the reception times to forward data to the
remainder of the system at the appropriate time to emulate processing the data as it was
originally received. An advantage of this approach is the waveform replay does not rely on
alternate external interfaces and all received data will potentially be available for replay
without transferring the data to the test data injection process. However, because the test
replay is embedded in the system separation of test and operational data will need to be
enforced procedurally and/or through separation of test and operational results.

The most critical timing sequence to emulate for evaluating system performance is the arrival
sequence of waveform data at the Data Processing partition. Therefore, waveform replay
will be designed to inject data to the Data Processing partition in the time sequence of the
original data.

There are some inherent limitations in reproducing an identical environment during testing
even with the replay capability. Small timing differences of data availability during testing
because of varied system loads or test platform configuration may affect the test results.
Also, it is difficult to reproduce the entire state of the system, especially where algorithms
use historic data in analyzing current inputs.

In spite of these limitations, the replay capability will greatly expand the ability to test the
system.

4.2.8.4 Algorithm Extensibility
Extensibility of key algorithms is key for maintaining and improving the System. Algorithm
extensibility allows the algorithms to be updated or replaced without affecting the remainder
of the applications. Algorithm extensibility is modeled using Plugin classes as described in
4.2.4 Types of Analysis Classes and 4.2.7.3 Algorithms for Automatic and Interactive
Processing.

4.2.8.5 Remote User Interface
An important consideration for the system is to provide a responsive user interface when the
analyst is accessing the data remotely. The design of the user interface data communication
needs to be optimized to minimize the delays introduced when the data is accessed remotely.

4.2.8.6 COI
The Common Object Interface (COI) is a definition of the software interface to the data on
the System. The definition is distinct from the actual format of the stored data to permit the
storage format to be optimized without affecting the application software. Persistence of
stored information on the system is described in 4.2.6.3 Object Storage and Distribution
Mechanism.

December 2015

40

4.3 Implementation View

4.4 Process View

4.5 Deployment View

December 2015

41

5 WORKS CITED

[1] Philippe Kruchten, "Architectural Blueprints—The '4+1' View Model of Software
Architecture", Paper published in IEEE Software 12 (6), November 1995, pp. 42-50. Available:
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf [Accessed 17 Dec
2015].

[2]		G.	Hohpe	and	B.	Wolfe,	Enterprise	Integration	Patterns,	Boston:	Addison-Wesley,	2003.	

December 2015

42

6 APPENDIX A. SPECIFICATIONS

The following System specifications shall be satisfied by the System Architecture:

2028 The System shall use a common object interface (data model and methods) for data.

2042 The System shall store automatic and interactive processing parameters in the database.

2043 The System shall store automatic and interactive processing results in the database for use by subsequent processing.

2218 The System shall make use of commercial off-the-shelf (COTS) and open source software where possible.

2219 The System shall use commercial off-the-shelf (COTS) and open source software with a defined upgrade path.

2220 The System software shall be written using a minimum number of programming languages.

2224 The System shall implement dates and times that include leap years and seconds.

2226 The System shall use year 2038 epoch rollover compliant date formats.

2233 The System software shall be maintained and controlled via configuration management software.

2262 The SUS/TST Subsystem shall be a functionally redundant copy of the OPS Subsystem.

2317 The System shall maintain a mission profile operating 52 weeks a year, 7 days per week, and 24 hours a day.

2322 The Training Subsystem shall support mission duration of eight hours per day, five days per week, 250 days per year.

2331 The System shall store on the System all existing data and five (5) additional years of data.

2332 The Training Subsystem shall provide storage with sufficient capacity to accommodate thirty (30) days of multi-

phenomenology waveform data for stations available on the OPS Subsystem.

5688 The System shall provide the System User the capability to remotely access required user interface functions on the

OPS Subsystem from a remote connection over a secure connection.

5689 The System shall provide access to all Analyst capabilities from a remote location over a secure connection.

5725 The System shall use date formats with four digit years.

5731 The ALT Subsystem shall be a copy of the OPS Subsystem in software and hardware not physically collocated with

OPS.

5738 The System shall reuse suitable existing software where practical.

5739 The System shall use open-source software whenever possible.

5740 The System shall use open-source software when both open-source and commercial software are available.

5766 The System shall support at least 1000 Authorized External Users.

5767 The System shall support each Authorized External User requesting up to 4GB of data per day.

5768 The System shall support at least 30000 requests for data and products per day.

5831 The System shall use relational database management systems that support ACID transactions, referential integrity and

fine grained locking.

5832 The System shall use a distributable open source database for Standalone Subsystems.

December 2015

43

This	is	the	last	page	of	the	document.

